Abstract Submitted for the DPP15 Meeting of The American Physical Society

 β_p Scaling of the Heat Flux Width in DIII-D¹ M.A. MAKOWSKI, C.J. LASNIER, LLNL, A.W. LEONARD, T.H. OSBORNE, GA — The scaling of the heat flux width with poloidal beta at the outer midplane, β_p , is a stringent test of the critical gradient model that posits that the heat flux width is set by an edge stability limit dependent on the separatrix pressure gradient. As β_p was varied by means of a combined density and power scan, the measured pressure gradient was found to scale linearly with β_p at both low (0.5 MA) and high (1.5 MA) plasma currents, and lie significantly below the infinite-n ideal ballooning limit critical pressure gradient as computed by the BALOO code. At fixed I_p , this implies that the separatrix pressure gradient scale length is approximately constant, which is consistent with the kinetic profile measurements. The ballooning limit was found to be constant in the β_p scan and set by the equilibrium with only a minor dependency on the edge pressure and current profiles. Both the pressure gradient and β_p varied by more than a factor of 2 in the scans.

¹Work supported by the US Department of Energy by LLNL under DE-AC52-07NA27344 and the US DOE under DE-FC02-04ER54698 and DE-FG02-95ER54309

> M.A. Makowski Lawrence Livermore National Laboratory

Date submitted: 20 Jul 2015

Electronic form version 1.4