Global gyrokinetic models for energetic particle driven Alfvén instabilities in 3D equilibria1 DON SPONG, Oak Ridge National Laboratory, IHOR HOLOD, University of California - Irvine — The GTC global gyrokinetic PIC model has been adapted to 3D VMEC equilibria and provides a new method for the analysis of Alfvénic instabilities in stellarators, 3D tokamaks, and helical RFP states. The gyrokinetic orderings ($k_{||}/k_{\perp} << 1$, $\omega/\Omega_{ci} << 1$, $\rho_{EP}/L << 1$) are applicable to a range of energetic particle driven instabilities that have been observed in 3D configurations. Applications of this model to stellarators have indicated that a variety of different Alfvén instabilities can be excited, depending on the toroidal mode number, fast ion average energy and fast ion density profile. Both an LHD discharge [1] where bursting $n = 1$ Alfvén activity in the TAE gap was observed and a W7-X case [2] have been examined. TAE, EAE/GAE modes have been found in the simulations, depending on the mode family and fast ion profiles used. The dynamical evolution of the instabilities shows the field period coupling between n and $n + Nfp$ expected for a stellarator. The development of gyrofluid reduced models that can capture relevant physics aspects of the gyrokinetic models will also be discussed.

1Research sponsored by the U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and the GSEP SciDAC Center.

Donald Spong
Oak Ridge National Laboratory

Date submitted: 20 Jul 2015

Electronic form version 1.4