Effects of plasma rotation in reconstructed 3-D equilibria for DIII-D

A. WINGEN, M.W. SHAFER, E.A. UNTERBERG, R.S. WILCOX, M.R. CIANCIOSA, S.P. HIRSHMAN, D.L. HILLIS, ORNL, L. LAO, C. PAZ-SOLDAN, GA — A technique for tokamak equilibrium reconstructions when weakly 3-D fields (δB/B ∼ 10⁻³) are applied is used for inner-wall-limited DIII-D discharges. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3-D equilibrium based on a suite of measurements. Observations at DIII-D show that plasma rotation larger than 20 krad/s changes the relative phase between the applied 3-D fields and the measured plasma response. Numerical simulations of linear, resistive, 2-fluid MHD show, that large plasma rotation increases flux surface corrugations1. Discharges with low averaged (∼10 krad/s) and peaked rotation profiles (∼40 krad/s) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. The resulting significance of including rotational effects in VMEC is discussed.

1Supported by US DOE DE-AC05-00OR22725, DE-FC02-04ER54698.