DPP15-2015-000683

Abstract for an Invited Paper for the DPP15 Meeting of the American Physical Society

Turbulence Decorrelation via Controlled ExB Shear in High-Performance Plasmas¹

G.R. MCKEE, University of Wisconsin-Madison

Multi-scale spatiotemporal turbulence properties are significantly altered as toroidal rotation and resulting ExB shearing rate profile are systematically varied in advanced-inductive H-mode plasmas on DIII-D ($\beta_N \approx 2.7, q_{95}=5.1$). Density, electron and ion temperature profiles and dimensionless parameters ($\beta_N, q_{95}, \nu^*, \rho^*$, and T_e/T_i) are maintained nearly fixed during the rotation scan. Low-wavenumber turbulence ($k_{\perp}\rho_S < 1$), measured with Beam Emission Spectroscopy, exhibits increased decorrelation rates (reduced eddy lifetime) as the ExB shear rises across the radial zone of maximum shearing rate (0.55 < $\rho < 0.75$), while the fluctuation amplitude undergoes little change. The poloidal wavenumber is reduced at higher shear, indicating a change in the wavenumber spectrum: eddies elongate in the direction orthogonal to shear and field. At both low and high shear, the 2D turbulence correlation function exhibits a tilted structure, consistent with flow shear. At mid-radius ($\rho \sim 0.5$), low-k density fluctuations show localized amplitude reduction, consistent with linear GYRO growth rates and ω_{ExB} shearing rates. Intermediate and high wavenumber fluctuations measured with Doppler Back-Scattering ($k_{\perp}\rho_S \sim 2.5$ -3.5) at $\rho=0.7$ and Phase Contrast Imaging ($k_{\perp}\rho_S > 5$) exhibit decreasing amplitude at higher rotation. The energy confinement time increases from 105 ms to 150 ms as the toroidal Mach number ($M=v_{TOR/vth,i}$) increases to $M_o \approx 0.5$, while transport decreases. TGLF calculations match the T_i profile with modest discrepancies in the T_e and n_e profiles. These results clarify the complex mechanisms by which ExB shear affects turbulence.

¹Work supported in part by the US DOE under DE-FG02-08ER54999, DE-FC02-04ER54698