Abstract Submitted for the DPP15 Meeting of The American Physical Society

Search for Correlation Between Plasma Rotation and Electron Temperature Gradient Scale Length in LOC/SOC Transition at Alcator C-Mod¹ SAEID HOUSHMANDYAR, WILLIAM L. ROWAN, PERRY E. PHILLIPS, The University of Texas at Austin, JOHN R. WALK, JOHN E. RICE, PSFC, MIT — Understanding the mechanism governing the linear ohmic confinement (LOC) and the transition to saturated ohmic confinement (SOC) has long been a focus of tokamak research. It is commonly accepted that at low density, the confinement is dominated by electron-scale turbulence while at high density, the turbulence is dominated by ion temperature gradient. At Alcator C-Mod, the core rotation reversal was shown to be consistent with this ansatz [Rice et al, Nucl. Fusion 53, 033004 (2013)]. However a recent study at AUG suggests that the intrinsic rotation behavior is rather determined by local plasma parameters regardless of the heating method or the confinement regime [McDermott *et al.*, Nucl. Fusion 54, 043009 (2014)]. Here, we follow this idea and search for dependence of intrinsic rotation on electron temperature gradient scale length, a quantity with a pivotal role in plasma transport. The high-resolution $(1 \ \mu s, 7mm)$ electron cyclotron emission diagnostic at C-Mod (FRCECE) coupled with the B_T jog technique allows direct L_{Te} measurements. In the B_T jog technique, a 1.5% change in the toroidal magnetic field shifts the viewing volume of the ECE by ~ 1 cm, and the ratio of the average of the signal to the change in the signal during its ramp-up yields L_{Te} .

¹Supported by USDoE awards DE-FG03-96ER-54373 and DE-FC02-99ER54512.

Saeid Houshmandyar The University of Texas at Austin

Date submitted: 23 Jul 2015

Electronic form version 1.4