Abstract Submitted
for the DPP15 Meeting of
The American Physical Society

A combined phase contrast imaging-interferometer system for the detection of multiscale density fluctuations on DIII-D

E.M. DAVIS, J.C. ROST, M. PORKOLAB, A. MARINONI, MIT, M.A. VAN ZEELAND, GA — A combined phase contrast imaging (PCI) and heterodyne interferometer system has been implemented on DIII-D, extending the physics capabilities of the pre-existing PCI and acting as a prototypical fluctuation diagnostic for next-step devices. The combined PCI-interferometer uses a single 10.6 \(\mu \)m laser beam, two interference schemes, and two detectors to measure \(\int \tilde{n}_e dl \) over a large spatiotemporal bandwidth (10 kHz \(< f < 2 \) MHz and \(0 \leq k \leq 20 \) cm\(^{-1} \)), allowing simultaneous measurement of ion- and electron-scale instabilities. Further, time-correlating our interferometer’s measurements with those of DIII-D’s pre-existing, toroidally separated (\(\Delta \zeta = 45^\circ \)) interferometer will allow novel studies of low-\(n \) Alfvén eigenmodes. The combined diagnostic’s small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices. Measurements from sound wave calibrations and DIII-D operations will be presented.

\(^1\)Work supported by US DOE under DE-FG02-94ER54235, DE-FC02-04ER54698, DE-FC02- 99ER54512 and NNSA SSGF.

E.M. Davis
MIT

Date submitted: 23 Jul 2015

Electronic form version 1.4