DPP15-2015-000930

Abstract for an Invited Paper for the DPP15 Meeting of the American Physical Society

High Internal Inductance for High β_N Steady-State Tokamak Operation¹ J.R. FERRON, GA

An attractive scenario for steady-state tokamak operation at relatively high values of the internal inductance, $l_i > 1$, has been demonstrated at DIII-D. The more peaked current density profile leads to reduced core energy transport and higher ideal stability limits that could eliminate the need for $n \ge 1$ active stabilization coils at $\beta_N \approx 4$, or enable $\beta_N \approx 5$ with wall stabilization. The scenario's potential is shown by discharges at $l_i \approx 1.3$ with high bootstrap current fraction $f_{BS} \approx 0.8$, high plasma pressure $\beta_N \approx 5$ and excellent confinement $H_{98(y,2)} \approx 1.8$. This very high β_N discharge with $q_{95} = 7.5$ has noninductive current fraction $f_{NI} > 1$ and too much bootstrap current in the H-mode pedestal, so l_i decreases with time. To achieve a stationary current profile, the key is to maximize β_N and f_{BS} while maintaining l_i high enough for stability through choice of q_{95} or by reduced pedestal current. DIII-D modeling shows that with q_{95} reduced to lower f_{BS} to ≈ 0.5 , a self-consistent equilibrium has $l_i \approx 1.07$ and $\beta_N \approx 4$ (below the n=1 no-wall limit) with $q_{95} \approx 6$. The remainder of the current can be externally-driven near the axis where the efficiency is high. Discharge tests with similar l_i in the ITER shape at $q_{95}=4.8$ have reached $f_{NI}=0.7$, $f_{BS}=0.4$ at $\beta_N \approx 3.5$ with performance appropriate for the ITER Q=5 mission, $H_{89}\beta_N/q_{95}^2$ ≈ 0.3 . The l_i was shown to increase further above 1, to enable higher self-consistent f_{BS} and β_N , by reducing pedestal pressure and bootstrap current density through application of n = 3 resonant magnetic fields. With similar fields for ELM mitigation, and neutral beam and electron cyclotron current drive sources for near-axis current drive, the high l_i scenario is a potential option for ITER. The increased core confinement can help mitigate the effect of reduced pedestal pressure.

¹Supported by US DOE under DE-FC02-04ER54698.