Abstract Submitted
for the DPP15 Meeting of
The American Physical Society

Connecting Microscopic L-H Transition Physics to the Power Threshold1 L. SCHMITZ, T.L. RHODES, L. ZENG, UCLA, B.A. GRIERSON, D. ELDON, PPPL, Z. YAN, G.R. MCKEE, U. Wise-Madison, J. BOEDO, UCSD, C. CHRYSYAL, ORAU, P. GOHIL, J.R. GROEBNER, K.H. BURRELL, GA — A physics-based model of the L-H transition power threshold P_{th} is needed to confidently extrapolate auxiliary heating requirements for burning plasmas. The goal of this work is to link differences in the microscopic turbulence-flow interaction to the macroscopic power threshold density and isotope scaling. The turbulence-driven poloidal ion flow is found decisive for initial turbulence suppression, with a Reynolds stress gradient (evaluated from BES data) sufficiently large to account for the measured poloidal flow acceleration. The turbulence-flow energy transfer rate $P_E = \langle \tilde{v}_r \tilde{v}_q \rangle \partial (v_q + v_{dia}) / \partial r$ depends on the L-mode seed flow shear, which shows a similar density dependence than P_{th} (increasing below the density n_{min} where P_{th} has a minimum, and increasing above n_{min}). Differences in turbulence properties, and lower L-mode diamagnetic seed flow shear are found in hydrogen plasmas compared to deuterium plasmas, supporting the experimentally observed P_{th} isotope scaling.

1This work supported by the U.S. DoE under DE-FG03-01ER54615, DE-FG02-08ER54984, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FC02-04ER54698 and DE-FG02-07ER54917.