High-field side scrape-off layer investigation: scaling of the power e-folding width and impurity screening behavior in near-double null configurations

B. LABOMBARD, A. KUANG, D. BRUNNER, R. MUMGAARD, J. TERRY, J.W. HUGHES, J. WALK, M. CHILENSKI, Y. LIN, E. MARMAR, G. WALLACE, D. WHYTE, S. WOLFE, S. WUKITCH, MIT PSFC, M. REINKE, ORNL — Fluctuation-induced transport measured on the C-Mod high-field side (HFS) scrape-off layer (SOL) is extremely low; n, T profiles there become very sharp in near-double null configurations and, unlike on the low-field side (LFS), no far SOL “shoulders” are seen. In single-null discharges, this transport asymmetry drives near-sonic parallel flows. A strong impurity screening behavior is also evident – 6x higher N puff rate on the HFS compared to LFS produces the same core N content. It has been proposed that future tokamaks should exploit this remarkable behavior [1] – locate all RF actuators and close-fitting wall structures on the HFS and employ near-double-null topologies, for example. C-Mod is presently investigating this physics more fully: (1) How does the HFS power e-folding width scale with plasma current, ~ 1/IP as seen for the LFS? (2) Does the favorable screening behavior extend to balanced-double null behavior where the HFS SOL flows become stagnant, or must some unbalance be required? Latest experimental results will be presented.

1Supported by USDoE agreement DE-FC02-99ER54512.

Brian LaBombard
MIT PSFC

Date submitted: 23 Jul 2015 Electronic form version 1.4