Abstract Submitted for the DPP15 Meeting of The American Physical Society

Low dimensional gyrokinetic PIC simulation by δf method C.M. CHEN, YASUTARO NISHIMURA, C.Z. CHENG, Institute of Space and Plasma Sciences, National Cheng Kung University, Taiwan — A step by step development of our low dimensional gyrokinetic Particle-in-Cell (PIC) simulation is reported. One dimensional PIC simulation of Langmuir wave dynamics is benchmarked.¹ We then take temporal plasma echo as a test problem to incorporate the δf method. Electrostatic driftwave simulation in one dimensional slab geometry² is resumed in the presence of finite density gradients. By carefully diagnosing contour plots of the δf values in the phase space, we discuss the saturation mechanism of the driftwave instabilities. A v_{\parallel} formulation is employed in our new electromagnetic gyrokinetic method by solving Helmholtz equation for time derivative of the vector potential.³ This work is supported by Ministry of Science and Technology of Taiwan, MOST 103-2112-M-006-007 and MOST 104-2112-M-006-019.

¹C.Z.Cheng and G.Knorr, J. Comput. Phys. **22**, 330 (1976).

²S.E. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993).

³H. Naitou (private communication, 2009); E. A. Starstev (private communication, 2014). Electron and ion momentum balance equations are employed in the time derivative of the Ampere's law.

Yasutaro Nishimura National Cheng Kung University

Date submitted: 24 Jul 2015

Electronic form version 1.4