Abstract Submitted for the DPP15 Meeting of The American Physical Society

Accelerated Taylor plumes for MIF targets¹ M.R. BROWN, D.A. SCHAFFNER, H.L. PARKS, A.B. ROCK, Swarthmore College — The SSX plasma device has been converted to a 2.5 m merging plasma wind tunnel configuration. Experiments are underway to study merging and stagnation of high density, helical Taylor states² to employ as a potential target for magneto-inertial fusion. Eventually, SSX Taylor states will be accelerated to over $100 \ km/s$ and compressed to small volumes either by stagnation or merging. Initial un-accelerated merging studies produce peak proton densities of $5 \times 10^{15} \ cm^{-3}$. Densities are measured with a precision quadrature He-Ne laser interferometer. Typical merged plasma parameters are $T_i = 20 \ eV$, $T_e = 10 \ eV$, $B = 0.4 \ T$ with lifetimes of $100 \ \mu s$. Results from a single prototype acceleration coil will be presented, as well as initial simulation studies of Taylor state plasma acceleration using multiple staged, pulsed theta-pinch coils.

Michael Brown Swarthmore College

Date submitted: 24 Jul 2015 Electronic form version 1.4

 $^{^1\}mathrm{Work}$ supported by DOE ARPA-E ALPHA program.

²Gray, et al, PRL **110**, 085002 (2013).