Substantial Fast-Wave Power Flux in the SOL of a Cylindrical Model; Comparison with Coaxial Modes

R.J. PERKINS, N. BERTELLI, J.C. HOSEA, C.K. PHILLIPS, G. TAYLOR, J.R. WILSON, PPPL — The NSTX high-harmonic fast-wave (HHFW) heating system can lose a significant amount of power along magnetic fields lines in the SOL to the divertor regions under certain conditions [1]. A cylindrical cold-plasma model, with parameters resembling those of NSTX, shows the existence of modes with relatively large RF field amplitudes in the low-density annulus [2], similar to recent results found with the full-wave simulation AORSA [3]. Here, we compare and contrast these modes against “coaxial modes,” modes that resemble TEM modes found in coaxial cables. We also compute the 3D Poynting flux as a function of length along the cylinder for comparison to NSTX. Such work is part of an effort to include the proper edge damping into full-wave codes so that they can reproduce the losses observed in NSTX and predict their importance for ITER. This work was supported by DOE Contract No. DE-AC02-09CH11466.


Rory Perkins
Princeton Plasma Physics Lab

Date submitted: 24 Jul 2015