Common Hamiltonian structure and concomitant topological invariants for extended magnetohydrodynamics models

MANASVI LINGAM, Princeton University, HAMDI M. ABDELHAMID, YOHEI KAWAZURA, University of Tokyo, PHILIP J. MORRISON, UT Austin, ZEN-SHO YOSHIDA, University of Tokyo, GEORGE MILOSHEVICH, UT Austin, KO TANEHASHI, NORIKI TAKAHASHI, University of Tokyo — Extended magnetohydrodynamics (XMHD) includes 2-fluid effects such as electron inertia and the Hall drift absent in ideal MHD. Hamiltonian structure of the XMHD models (Hall MHD, inertial MHD [3] and full XMHD) is presented [1]. Existence of elegant variable transformations that map every XMHD model to a common noncanonical Poisson bracket is highlighted [2]. The bracket is used to derive the existence of two unique helicities (Casimir invariants) for these models, each of which exhibits close similarities with the magnetic and fluid helicities [1,2] - this is highly significant as the latter are important topological invariants. The Lagrangian origins of the helicities and variable transforms, and avenues for future work are outlined.


1Support: U.S. Dept. of Energy Contract No. DE-FG02-04ER54742 and Grant-in-Aid (23224014) from MEXT-Japan

Manasvi Lingam
Princeton University