Abstract Submitted for the DPP15 Meeting of The American Physical Society

Non-solenoidal Startup via Local Helicity Injection on Pegasus: Progress and Plans¹ J.A. REUSCH, J.L. BARR, G.M. BODNER, M.W. BONGARD, M.G. BURKE, R.J. FONCK, E.T. HINSON, B.T. LEWICKI, J.M. PERRY, D.J. SCHLOSSBERG, University of Wisconsin-Madison — Non-solenoidal plasma startup via local helicity injection (LHI) at the Pegasus toroidal experiment now provides routine operation at $I_p \approx 0.17 MA$ with $I_{inj} \approx 5 kA$ and $V_{inj} \approx 1 kV$ from four active arc injectors. Experiments in the past year have advanced the understanding of the governing physics of LHI and its supporting technology. Injector impedance scales as $V_{inj}^{3/2}$ and is governed by two effects: a quasineutrality constraint on electron beam propagation, related to the tokamak edge density, and double-layer sheath expansion, related to n_{arc}. Injector design improvements permit operation at V_{ini} ≥ 1 kV without deleterious PMI or impurity generation. Discharges with varied shape, $I_p(t)$, and helicity input test a predictive 0D power-balance model for LHI startup. Anomalous, reconnection-driven $T_i > 800$ eV and strong MHD activity localized near the injectors are observed during LHI. Preliminary core Thomson scattering measurements indicate surprisingly high $T_e > 300$ eV, which if verified may indicate the dominance of high-energy electron fueling from the injector current streams. A new divertor injector system has been designed to substantially increase the available helicity input rate and support critical studies of confinement during LHI and reconnection activity at high I_p. A proposed upgrade to the Pegasus experiment will extend these studies to NSTX-U relevant parameters.

¹Support: US DOE grants DE-FG02-96ER54375; and DE-SC0006928.

Joshua Reusch University of Wisconsin-Madison

Date submitted: 24 Jul 2015

Electronic form version 1.4