H-mode and Edge Physics on the Pegasus ST: Progress and Future Directions

M.W. BONGARD, G.M. BODNER, J.L. BARR, M.G. BURKE, R.J. FONCK, E.T. HINSON, D.M. KRIETE, B.T. LEWICKI, J.M. PERRY, J.A. REUSCH, D.J. SCHLOSSBERG, K.E. THOME, G.R. WINZ, University of Wisconsin-Madison — Ohmic H-modes are routinely attained on the Pegasus ST, in part due to the low L-H power threshold P_{LH} arising from low-B_T operation at $A \sim 1$. Characteristics of H-mode include: improved τ_e, consistent with H_{98}; edge current and pressure pedestal formation; and the occurrence of ELMs. Experiments in the past year have examined magnetic topology and density dependencies of P_{LH} in detail. P_{LH} exceeds ITER L-H scaling values by 10–20×, with P_{LH}/P_{ITPA08} increasing sharply as $A \rightarrow 1$. No P_{LH}-minimizing density has been found. Unlike at high-A, P_{LH} is insensitive to limited or diverted magnetic topologies to date. The low B_T and modest pedestal values at $A \sim 1$ afford unique edge diagnostic accessibility to investigate ELMs and their nonlinear dynamics. $J_{edge}(R,t)$ measured through a Type I ELM shows a complex pedestal collapse and filament ejection. These studies are being extended to higher I_p and longer pulse length with LHI startup to conserve Ohmic V-s and improve MHD stability. A modest-cost upgrade to the facility will enable detailed validation studies of nonlinear ELM dynamics and ELM control. This initiative will upgrade the centerstack, increasing B_T by $\times 3$, Ohmic V-s by $\times 4$, and pulse lengths to 100 ms at $A < 1.3$, as well as deploy a comprehensive 3D magnetic perturbation coil system with full poloidal coverage from frame coils and helical centerstack windings.

1Work supported by US DOE grant DE-FG02-96ER54375.

Michael Bongard
University of Wisconsin-Madison

Date submitted: 24 Jul 2015
Electronic form version 1.4