Abstract Submitted for the DPP15 Meeting of The American Physical Society

The RFP dynamo: MHD to kinetic regimes J.S. SARFF, A.F. ALMAGRI, D.J. DEN HARTOG, K.J. MCCOLLAM, M.D. NORNBERG, J.P. SAUPPE, C.R. SOVINEC, P.W. TERRY, J.C. TRIANA, Univ. Wisconsin-Madison and CMSO, D.L. BROWER, W.X. DING, E. PARKE, Univ. California-Los Angeles and CMSO — The hallmark of magnetic relaxation in an RFP plasma is profile flattening of $\mathbf{J}_0 \cdot \mathbf{B}_0 / B^2$ effected by a dynamo-like emf in Ohm's law. This is wellstudied in single-fluid MHD, but recent MST results and extended MHD modeling show that both $\langle \mathbf{V_1} \times \mathbf{B_1} \rangle$ and the Hall emf, $-\langle \mathbf{J_1} \times \mathbf{B_1} \rangle / en_e$, are important, revealing decoupled electron and ion motion. Since dynamo is current-related, the electron fluid emf, $\langle V_{e,1} \times B_1 \rangle$, captures both effects. In MST, the electron flow is dominantly $\mathbf{V}_{\mathbf{e},\mathbf{1}} \approx \mathbf{E}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}/B^2$, implying $\langle \mathbf{V}_{\mathbf{e},\mathbf{1}} \times \mathbf{B}_{\mathbf{1}} \rangle \approx \langle \mathbf{E}_{\mathbf{1}} \cdot \mathbf{B}_{\mathbf{1}} \rangle /B$. This and the Hall emf are measured in MST for comparison in Ohm's law. A finitepressure response is also possible, e.g., "diamagnetic dynamo", $\nabla \cdot \langle p_{e,1} \mathbf{B}_1 \rangle / en_e$, associated with diamagnetic drift, and "kinetic dynamo" associated with collisionless streaming of electrons in a stochastic magnetic field. Correlation measurements $< n_{e,1}B_{r,1} > \text{and} < T_{e,1}B_{r,1} > \text{using FIR interferometry and Thomson scattering}$ reveal these as small but finite in MST. A kinetic emf might be expected for any high-beta plasma with inhomogeneous pressure. Support by DOE/NSF

> John Sarff Univ. Wisconsin-Madison

Date submitted: 24 Jul 2015

Electronic form version 1.4