Abstract Submitted for the DPP15 Meeting of The American Physical Society

Physics of Plasma Cathode Current Injection During LHI¹ E.T. HINSON, J. BARR, M. BONGARD, M.G. BURKE, R. FONCK, J. PERRY, UW-Madison — Localized helicity injection (LHI) ST startup employs current sources at the tokamak edge. Max I_p in LHI scales with injection voltage V_{inj} , requiring an understanding of injector impedance. For the arc-plasma cathode electron injectors in Pegasus, impedance is plasma-determined, and typically $V_{inj} > 1kV$ for $I_{inj} = 2kA$. At low $I_{\rm inj}$, $I_{\rm inj} \propto V_{\rm inj}^{3/2}$, an indication of a double layer (DL) common to such devices. However, at $I_{\rm inj} > \sim 1 {\rm kA}$, $I_{\rm inj} \propto V_{\rm inj}^{1/2}$ occurs, a scaling expected for limited launched beam density, $n_b \equiv I_{inj} / (e \sqrt{2eV_{inj}/m_e} A_{inj}) \sim I_{inj} / V_{inj}^{1/2}$. An ohmic discharge injection target was created to test this hypothesis. Langmuir probe data showed $I_{\rm inj}/V_{\rm inj}^{1/2} \propto n_{\rm edge}$ at low $n_{\rm edge}$, consistent with a limit $(n_{\rm edge} \geq n_{\rm e,b})$ imposed by quasineutrality. If edge fueling maintained $n_{\rm edge} \geq n_{\rm e,b}$, spectroscopic measurements of source density $n_{\rm arc}$ indicated $I_{\rm inj}/V_{\rm inj}^{1/2} \propto n_{\rm arc}$, as expected from DL expansion. Thus $n_{\rm b}$ established by $n_{\rm arc}$ or $n_{\rm edge}$ determines $V_{\rm inj}$ up to the onset of cathode spot (CS) arcing. Technology development has increased obtainable V_{inj} and reduced CS damage using new ring shielding and a cathode design drawing CS's away from insulators. This involved a novel optimization of conical frustum geometry. Finally, consistent with NIMROD predictions of coherent streams in the edge during LHI, pairwise triangulation of outboard Mirnov data assuming beam m=1 motion has allowed an estimate of beam R(t), Z(t) location that is near the injector R, and consistent across the array.

¹Supported by U.S. DOE Grant DE-FG02-96ER54375

Edward Hinson UW-Madison

Date submitted: 24 Jul 2015

Electronic form version 1.4