Abstract Submitted for the DPP15 Meeting of The American Physical Society

Too big to see: overlooked plasma-destroying reaction with cross section 10¹² times that for fusion necessitates redesign of ITER* BOGDAN MAGLICH, DAN SCOTT, TIM HESTER, California Science & Engineering Coporation (CALSEC), CALSEC COLLABORATION — Existence of charge transfer collisions (CT) was overlooked in ITER design^{1,2} although CT cross section³, σ_{CT} $\sim 10^9$ b, is $\sim 10^{12}$ times that for fusion, $\sigma_{DT} \sim$ mb, at T = 10 KeV. CT de-confines plasma by neutralizing ions. Since $\sigma_{CT} = 100 \ \sigma_{IO}$, ion $\tau_{CT} \sim \tau_E = 3 \text{x} 10^{-7} \text{ s}$ <<th>ermalization time ~ 0.1 s; plasma cannot form. $\tau_E \sim 1$ s requires operating vacuum p $\sim 10^{-9}$ torr, base 10^{-11} torr. CT oversight brings 4 serious but corrigible errors: -Operating at T = 10-30 KeV below Critical ion energy^{4,5} $E_c \sim 200$ KeV, CT prevents plasma formation⁶. Above E_c , ion dominates $\tau_E = 24$ s achieved⁻⁸ with 700 KeV D⁺.-No UHV system; base 10^{-7} torr². Based on tenet that $\sigma_{CT}/\sigma_{io}\sim$ 10^{-2} , opposite to measured³ $\sigma_{CT}/\sigma_{io} \sim 10^2$, ionization by itself, acts as UHV ion pump; data show it is compressor.—Neutral injection of 10²² D/T s⁻¹ will result in pressure ~ 1 torr, a "poison."-ITER goal $n\tau \sim 10^{20} \text{ m}^{-3} \text{ s}^{-1}$ presented as Lawson⁹ is "1% burn-up" criterion; real $n\tau \sim 10^{22} \text{ m}^{-3}\text{s}^{-1}$. *Preprint presented to Fusion Energy Sci. Committee, USDOE 11/11/14. †Deceased (1) Nucl. Fusion 49 065012 (2009). (2) Pumping Systems for ITER, 3/01 (2001). (3) Physics Scripta, 23, 143 (81). (4) Evid. Crit. Energy, www.world-scientific-education.net (5) Ibid Am. Phys. Soc. March Meeting 2015, Abstract T34.00004. (6) Exp. Evidence Absence Thermonuc. Fus. Power prod. In TFTR, www.world-scientific-education.net. (7) Phys. Rev. Lett. <u>54</u>, 769 (85). (8) NIM A 271 1-288 (88). (9) Proc. Phys. Soc. B70, 6, (57).

> Bogdan Maglich California Science & Engineering Coporation (CALSEC)

Date submitted: 24 Jul 2015 Electronic form version 1.4