CPIC: A Parallel Particle-In-Cell Code for Studying Spacecraft Charging

COLLIN MEIERBACHTOL, GIAN LUCA DELZANNO, DAVID MOULTON, LOUIS VERNON, Los Alamos National Laboratory — CPIC is a three-dimensional electrostatic particle-in-cell code designed for use with curvilinear meshes [1]. One of its primary objectives is to aid in studying spacecraft charging in the magnetosphere. CPIC maintains near-optimal computational performance and scaling thanks to a mapped logical mesh field solver [2], and a hybrid physical-logical space particle mover (avoiding the need to track particles). CPIC is written for parallel execution, utilizing a combination of both OpenMP threading and MPI distributed memory. New capabilities are being actively developed and added to CPIC, including the ability to handle multi-block curvilinear mesh structures. Verification results comparing CPIC to analytic test problems will be provided. Particular emphasis will be placed on the charging and shielding of a sphere-in-plasma system. Simulated charging results of representative spacecraft geometries will also be presented. Finally, its performance capabilities will be demonstrated through parallel scaling data.


Collin Meierbachtol
Los Alamos National Laboratory

Date submitted: 25 Jul 2015

Electronic form version 1.4