Observation of the electron density fluctuations by using the O-mode Microwave Imaging Reflectometry in LHD

YOSHIO NAGAYAMA, National Institute for Fusion Science, SOICHIRO YAMAGUCHI, Kansai University, HAYATO TSUCHIYA, National Institute for Fusion Science, DAISUKE KUWAHARA, Tokyo University of Agriculture and Technology, LHD EXPERIMENTAL TEAM — Visualization of local electron density fluctuations will be very useful to study the physics of confinement and instabilities in fusion plasma. In the Large Helical Device (LHD), the O-mode microwave imaging reflectometry (O-MIR) has been intensively developed in order to visualize the electron density fluctuations. The frequency is 26 – 34 GHz. This corresponds to the electron density of 0.8 – 1.5 \times 10^{19} \text{ m}^{-3}. The plasma is illuminated by the Gaussian beam with four frequencies. The imaging optics make a plasma image onto the newly developed 2D (88) Horn-antenna Millimeter-wave Imaging Device (HMID). In HMID, the signal wave that is accumulated by the horn antenna is transduced to the micro-strip line by using the finline transducer. The signal wave is mixed by the double balanced mixer with the local wave that is delivered by cables. By using O-MIR, electron density fluctuations are measured at the H-mode edge and the ITB layer in LHD.

\(^1\)This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network, by the NIFS LHD project, by KAKENHI, and by IMS.

Yoshio Nagayama
National Institute for Fusion Science

Date submitted: 07 Jul 2016