A Multi Fluid Analysis of the Ignition Criterion

LUCA GUAZZOTTO, Auburn University, RICCARDO BETTI, University of Rochester — In magnetic confinement nuclear fusion experiments, performance with respect to ignition is expressed in terms of the Lawson criterion, a zero-dimensional, single-fluid, steady-state power balance expressing the plasma properties needed for ignition through the energy confinement time τ_E and the plasma temperature and density. Several improvements to the classical criterion are investigated. Ions, electrons and α particles are allowed to have different energy confinement times and energy coupling times are expressed through physics-based relations. The effect of multi-fluid physics is examined in a steady-state analysis and for the time-dependent case, which requires a nonlinear treatment more detailed than the standard “\dot{T} vs. T” single-fluid one. A one-dimensional analysis is also considered to investigate the importance of density and temperature profiles on the τ_E needed for ignition. Rather than by solving the 1D transport equations, this is done with a parametric study.

This work was performed under DOE grant DE-FG02-93ER54215.