Limiter heat loads during the first operation of the W7-X stellarator

GLEN WURDEN, Los Alamos National Laboratory, HOLGER NIE-
MAN, MARCIN JAKUBOWSKI, SERGEY BOZHENKOV, CHRISTOPH BIE-
DERMANN, STEFAN MARSEN, Max Planck Inst. for Plasma Physics, Greifswald,
FLORIAN EFFENBERG, LAURIE STEPHEY, OLIVER SCHMITZ, U of Wiscon-
sin, Madison, W7-X TEAM1 — During the first operational phase (OP1.1) of the
new W7-X stellarator, five poloidal graphite limiters served as the main boundary
for the plasma. There was a dedicated set of diagnostics to observe the performance
of the temporary poloidal limiters and infer basic transport behavior of the 3-D
helical SOL plasma. We describe IR imaging of the limiters, which resulted in ob-
servations of 1) heat flux determination as a function of time and space, 2) total
energy into the limiters, 3) high-frequency helical patterns of energy bursts onto the
limiters, 4) changes in surface emissivity, and 5) detection of UFO’s (small-to-large
dusts). These measurements were made in 2 magnetic configuration discharges (dif-
fering iota), and in ones where the power loads to the limiters were systematically
modified by the use of trim coils. Observed power fractions on the limiters ranged
from 40% to 20% of the 0.6 to 4 MW ECRH input powers.

1Acknowledgement: Funded under DOE LANS Contract DE-AC5026NA25396 and
DE-SC0014210, and within the EUROfusion Consortium under Euratom grant
633053.