Abstract Submitted for the DPP16 Meeting of The American Physical Society

Non-inductive Hybrid ScenarioTransport and Turbulence at Reduced Plasma Torque¹ K.E. THOME, ORAU, C.C. PETTY, D.C. PACE, GA, F. TURCO, Columbia U, T.L. RHODES, UCLA — As the neutral beam injection (NBI) torque is lowered in steady-state hybrid plasmas via counter-beam injection, increased turbulence and thermal transport is observed, particularly in the ion channel. These discharges require $P_{co-NBI} = 11$ MW and $P_{ECH} = 3$ MW to achieve zero surface loop voltage. As the beam torque is reduced from ~ 8.5 N-m to ~ 4 N-m with $\beta_N \sim 3$ and $q_{95} \sim 6$, the global confinement decreases from $H_{98y,2}$ of ~ 1.5 to ~ 1.2 . Local transport analysis using TRANSP shows that the lower torque discharges have increased ion thermal diffusivity across the whole profile and increased electron thermal diffusivity localized to the $\rho = 0.7$ region. Similarly, Doppler Backscattering shows increased density fluctuations at intermediate wavenumbers at the lower torque. However, fast-ion transport caused by off-axis fishbones favorably decreases from $\sim 0.7m^2/s$ to $\sim 0.1m^2/s$ as the torque is lowered, partially offsetting the thermal transport reduction. These measured changes in turbulence and transport are being compared to plasma simulations using TGLF/GYRO to better predict the confinement of future steady-state hybrids that will be primarily RF-heated.

¹Work supported by the US DOE under DE-FC02-04ER54698.

K.E. Thome ORAU

Date submitted: 12 Jul 2016

Electronic form version 1.4