Abstract Submitted for the DPP16 Meeting of The American Physical Society

Overview of the Tri Alpha Energy Plasma Diagnostics Program MATTHEW THOMPSON, HIROSHI GOTA, SERGEI PUTVINSKI, MICHEL TUSZEWSKI, MICHL BINDERBAUER, Tri Alpha Energy, Inc., THE TAE TEAM — Tri Alpha Energy (TAE) seeks to study the evolution of advanced beam-driven field-reversed configuration (FRC) plasmas sustained and heated by neutral beam (NB) injection [1,2]. Heating of FRCs is the focus of the upcoming C-2W program. Data on the FRC plasma performance is provided by a comprehensive suite of diagnostics including magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. While many of these diagnostic systems were first implemented for the earlier C-2 [3]and C-2U experiments, virtually all of them benefit from continuous improvement and upgrades. TAE maintains a large plasma diagnostics development program working on a variety of new systems for future devices including: far-infrared polarimetry, visible and infrared fast imaging cameras, proton detector arrays, end loss analyzers, impurity and majority ion CHERS, and 100-channel bolometer units with proprietary compact local data acquisition. In addition, extensive ongoing work focuses on developing advanced methods of measuring the internal magnetic fields of the FRC plasma. [1] M. W. Binderbauer et al., AIP Conference Proceedings 1721, 030003 (2016). [2] M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015). [3] H. Gota et al., Rev. Sci. Instrum. 85, 11D836 (2014).

> Matthew Thompson Tri Alpha Energy, Inc.

Date submitted: 13 Jul 2016

Electronic form version 1.4