Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

D.J. SCHLOSSBERG, J.L. BARR, G.M. BODNER, M.W. BONGARD, R.J. FONCK, J.M. PERRY, J.A. REUSCH, C. RODRIGUEZ SANCHEZ, University of Wisconsin-Madison — Understanding the electron temperature (T_e) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive T_e measurements during LHI reveal centrally-peaked profiles with $T_e > 100$ eV for plasma current $I_p > 120$ kA, toroidal field $B_t \sim 0.15$ T, and electron density $n_e \sim 10^{19}$ m$^{-3}$. T_e rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of T_e at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with $I_p \sim 50$ kA and reduced $T_{e,max}$. Inboard divertor injection achieves higher I_p using minimal inductive drive and thus isolates effects of LHI drive on T_e. Initial results in this configuration show T_e rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile ~ 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate n_e and high-T_e, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future.

\[1\] Work supported by US DOE grant DE-FG02-96ER54375.

M.W. Bongard
University of Wisconsin-Madison

Date submitted: 13 Jul 2016

Electronic form version 1.4