Overview of Non-Solenoidal Startup Studies in the Pegasus ST

M.W. BONGARD, J.L. BARR, G.M. BODNER, M.G. BURKE, R.J. FONCK, J.L. PACHICANO, J.M. PERRY, J.A. REUSCH, N.J. RICHNER, C. RODRIGUEZ SANCHEZ, D.J. SCHLOSSBERG, University of Wisconsin-Madison — Local helicity injection (LHI) is a non-solenoidal startup method pursued on Pegasus utilizing compact, high power current sources ($A_{inj} \sim 2 - 4 \text{ cm}^2$, $I_{inj} \sim 10 \text{ kA}$, $V_{inj} \sim 1 \text{ kV}$) at the plasma edge. Outboard injectors ($N_{inj} = 4$, $A_{inj} = 8 \text{ cm}^2$) produce $I_p \sim 170$ kA plasmas compatible with Ohmic drive. A 0-D model that treats the plasma as a resistive element with time-varying inductance and enforces I_p limits from Taylor relaxation is used to interpret experimental $I_p(t)$ in several scenarios. Strong inductive drive arises from the plasma shape evolution, in addition to poloidal field induction. A new injector system has recently been installed in the lower divertor region ($N_{inj} = 2$, $A_{inj} = 8 \text{ cm}^2$) to explore the implications of geometric placement of the helicity injectors on LHI startup. This geometry supports tests of reconnection dynamics seen in NIMROD simulations, high-B_T effects expected in larger devices, and LHI electron confinement with and without inductive assist. Plasmas with $I_p > 130 \text{ kA}$, $V_{inj} \sim 0.5 \text{ kV}$, $\Delta t_{\text{pulse}} \sim 8 \text{ ms}$ and $B_T/B_{T,max} \leq 50\%$ are produced with the inboard system to date, consistent with performance expectations. Higher I_p is expected with increased B_T, V_{inj}, and Δt_{pulse}. Thomson scattering data in both geometries indicate high $T_e \geq 100 \text{ eV}$ during LHI, suggesting the confinement is not strongly stochastic. Conceptual design work is exploring the feasibility of coaxial helicity injection and ECH heating on Pegasus in addition to LHI.

1Work supported by US DOE grant DE-FG02-96ER54375.

M.W. Bongard
University of Wisconsin-Madison

Date submitted: 13 Jul 2016

Electronic form version 1.4