Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

J.M. PERRY, J.L. BARR, G.M. BODNER, M.W. BONGARD, R.J. FONCK, J.L. PACHICANO, J.A. REUSCH, C. RODRIGUEZ SANCHEZ, N.J. RICHNER, D.J. SCHLOSSBERG, University of Wisconsin-Madison — Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field ($B_{T,\text{inj}} = 0.23$ T). However, relaxation to a tokamak state is increasingly frustrated for $B_{T,\text{inj}} > 0.15$ T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved V_{inj} was limited to ~ 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive $I_p \sim 0.13$ MA has been attained, with $T_e > 100$ eV and $n_e \sim 10^{19}$ m$^{-3}$. Extrapolation to full B_T, longer pulse length, and $V_{inj} \sim 1$ kV suggest $I_p > 0.25$ MA should be attainable in a plasma dominated by helicity drive.

1Work supported by US DOE grant DE-FG02-96ER54375.

M.W. Bongard
University of Wisconsin-Madison

Date submitted: 13 Jul 2016

Electronic form version 1.4