Abstract Submitted for the DPP16 Meeting of The American Physical Society

H-mode and ELM Characteristics at Ultralow Aspect Ratio in the Pegasus Experiment¹ R.J. FONCK, J.L. BARR, M.W. BONGARD, D.M. KRIETE, J.M. PERRY, J.A. REUSCH, University of Wisconsin-Madison, K.E. THOME, ORAU — Operation at low B_T and A < 1.3 allows access to the Hmode regime in the Pegasus experiment using only Ohmic heating.² Modest plasma parameters in this regime permit detailed probe measurements of the edge pedestal region. H-mode plasmas have standard L-H transition phenomena: a drop in D_{α} radiation; formation of pressure and current pedestals; field-aligned filament ejection during ELMs; and a doubling of τ_E from $H_{98} \sim 0.5$ to ~ 1 . The L-H power threshold P_{LH} increases monotonically with n_e , consistent with both the ITPA08 scaling, P_{ITPA08} , used for ITER and the theoretical FM³ power threshold model. Unlike at high A, P_{LH} is comparable in limited and single-null diverted topologies at $A \sim 1.2$, consistent with FM³ predictions. P_{LH}/P_{ITPA08} increases rapidly as $A \to 1$, and is > 10 for A < 1.3. Multiple-*n* modes are observed during ELMs, consistent with excitation of multiple peeling-ballooning modes. Small, Type-III-like ELMs occur at $P_{OH} \sim P_{LH}$ with $n \leq 4$. Large, Type-I-like ELMs occur with $P_{OH} > P_{LH}$ and intermediate 5 < n < 15. High-resolution spatiotemporal measurements of $J_{edge}(R,t)$ across single ELMs show the nonlinear generation and expulsion of current-carrying filaments during the large ELM crash. Helical edge current injection appears to suppress small ELM activity.

¹Work supported by US DOE grant DE-FG02-96ER54375. ²K.E. Thome *et al.*, *Phys. Rev. Lett.* **116**, 175001 (2016).

> M.W. Bongard University of Wisconsin-Madison

Date submitted: 13 Jul 2016

Electronic form version 1.4