Flux-driven algebraic damping of $m=2$ diocotron mode1 C.Y. CHIM, T.M. O’NEIL, University of California San Diego — Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of $m = 2$ diocotron modes.2 Due to small field asymmetries a low density halo of electrons is transported radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r_{res}, where $f = mf_{E\times B}(r_{\text{res}})$. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from the exponential spatial Landau damping in a linear wave-particle resonance. This poster uses analytic theory and simulations to explain the new flux-driven algebraic damping of the mode. As electrons are swept around the nonlinear “cat’s eye” orbits of the resonant wave-particle interaction, they form a quadrupole ($m = 2$) density distribution, which sets up an electric field that acts back on the plasma core. The field causes an $E \times B$ drift motion that symmetrizes the core, i.e. damps the $m = 2$ mode.

1Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451