DPP16-2016-000801

Abstract for an Invited Paper for the DPP16 Meeting of the American Physical Society

Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas M.J. ROSENBERG, Laboratory for Laser Energetics, U. of Rochester

Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion–ion collisions (λ_{ii}) approaches the size of the hot-fuel region (R_{fuel}) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of $N_{\rm K} = \lambda_{ii}/R_{\rm fuel}$ was varied in D³He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions ($N_{\rm K} \sim 0.01$) to strongly kinetic conditions ($N_{\rm K} \sim 10$). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as $N_{\rm K}$ increases from ~ 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments—namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity—are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.