Abstract Submitted
for the DPP16 Meeting of
The American Physical Society

Transition from Beam-Target to Thermonuclear Fusion in
High-Current Deuterium Z-Pinch Simulations1 DUSTIN OFFERMANN,
DALE WELCH, DAVE ROSE, CARSTEN THOMA, ROBERT CLARK, CHRIS
MOSTROM, Voss Scientific, LLC, ANDREA SCHMIDT, ANTHONY LINK,
Lawrence Livermore National Laboratory — Fusion yields from dense, Z-pinch plas-
mas are known to scale with the drive current, which is favorable for many potential
applications. Decades of experimental studies, however, show an unexplained drop
in yield for currents above a few mega-ampere (MA). In this work, simulations of
DD Z-Pinch plasmas have been performed in 1D and 2D for a constant pinch time
and initial radius using the code LSP, and observations of a shift in scaling are
presented. The results show that yields below 3 MA are enhanced relative to pure
thermonuclear scaling by beamlike particles accelerated in the Rayleigh-Taylor in-
duced electric fields, while yields above 3 MA are reduced because of energy lost by
the instability and the inability of the beamlike ions to enter the pinch region.

1This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA).

Dustin Offermann
Voss Scientific, LLC

Date submitted: 14 Jul 2016

Electronic form version 1.4