Abstract Submitted for the DPP16 Meeting of The American Physical Society

Experimental characterization of NIF hohlraum emission in the Rayleigh-Jeans limit (1 eV to 5 eV)¹ J. D. MOODY, C. E. GOYON, J. S. ROSS, G. F. SWADLING, A. S. MOORE, K. L. BAKER, C. A. THOMAS, M. B. SCHNEIDER, O. L. LANDEN, P. A. MICHEL, D. J. STROZZI, L. DIVOL, K. WIDMANN, Lawrence Livermore National Lab — We use several measurements to estimate NIF hohlraum emission in the Rayleigh-Jeans limit where $h\nu \ll kT_R$ and T_R is the hohlraum radiation temperature which is typically ≈ 260 to 300 eV. The measurements are primarily optical, consisting of hohlraum emission which transmits through the capsule and is collected by an optical photodiode, optical emission emitted from the laser-entrance hole in the 4 eV range, and various other optical measurements. These measurements can help quantify the laser-plasma interaction processes occurring in the hohlraum and may provide insight into the atomic physics of the Au wall at long wavelength. We describe our findings and discuss interpretations.

¹This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

> John D. Moody Lawrence Livermore National Lab

Date submitted: 14 Jul 2016

Electronic form version 1.4