Abstract Submitted for the DPP16 Meeting of The American Physical Society

The PLX- α Project: Progress and Plans¹ S. HSU, LANL, F. D. WITHERSPOON, HyperV Technologies Corp., J. CASSIBRY, UAH, M. GILMORE, UNM, R. SAMULYAK, BNL, P. STOLTZ, Tech-X Corporation, AND THE PLX- α TEAM — The Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF) [Hsu et al., IEEE Trans. Plasma Sci. 40, 1287 (2012)]. In the past year, progress has been made in designing and testing new contoured-gap coaxial guns, 3D model development and simulations (via Eulerian and Lagrangian hydrocodes) of PLX- α -relevant plasmaliner formation/implosion via up to 60 plasma jets ($\sim 100 \text{ kJ}$ of liner kinetic energy), 1D semi-analytic and numerical modeling of reactor-scale PJMIF (10s of MJ of liner kinetic energy), and preparation/upgrade of the PLX facility/diagnostics. The design goal for the coaxial guns is to form plasma jets of up to initial $n \sim 2 \times 10^{16} \text{ cm}^{-3}$, mass ≈ 5 mg, $V_{jet} \approx 50$ km/s, $r_{jet} = 4$ cm, and length ≈ 10 cm. The modeling research is assessing ram-pressure amplification and Mach-number degradation during liner convergence, evolution of liner non-uniformity amplitude and mode number, and exploration of PJMIF configurations with promising 1D and 2D fusion gains. Conical multi-jet-merging and full- 4π experiments will commence in Fall, 2016 and late 2017, respectively.

¹Supported by the ARPA-E ALPHA Program.

Scott Hsu LANL

Date submitted: 15 Jul 2016

Electronic form version 1.4