Abstract Submitted for the DPP16 Meeting of The American Physical Society

Measurement of the 6He Decay Produced by the 9Be (n,α) 6He Reaction KATELYN COOK, MICAH COATS, MARK YULY, Houghton Coll, STEPHEN PADALINO, State University of New York at Geneseo, CRAIG SANG-STER, SEAN REGAN, Laboratory for Laser Energetics — The OMEGA laser at LLE is routinely used to implode gas-filled capsules to study light ion fusion reaction rates of interest to stellar nucleosynthesis. As a first step toward a possible measurement of the ${}^{3}H(t,\gamma){}^{6}He$ radiative capture reaction, a detector system capable of measuring the 801 ms half-life of ⁶He has been developed and is being tested using ⁶He nuclei produced via the ${}^{9}Be(n,\alpha){}^{6}He$ reaction. Deuterons from the SUNY Geneseo tandem Pelletron produce neutrons in a thick deuterated polyethylene target via the ${}^{2}H(d,n){}^{3}He$ reaction. These neutrons are allowed to strike a beryllium target placed in front of a silicon ΔE -E detector telescope, which is used to identify the β particles from ⁶He decay. Following an approximately five second long activation period, the beryllium sample is immediately counted for about five seconds. The pulse heights for each detector and the timestamp are recorded using a specially configured femtoDAQ acquision system and used to measure the decay curve. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

> Katelyn Cook Houghton Coll

Date submitted: 15 Jul 2016

Electronic form version 1.4