Laser Induced Fluorescence (LIF) Data for Neutral Argon (ArI) in a Large Scale Helicon Plasm

RALPH KELLY, MARK GILMORE, KEVIN MEANY, YUE ZHANG, Univ of New Mexico, TIFFANY DESJARDINS, Los Alamos National Laboratories — When neutral and ion densities are spatially non-uniform, neutral-ion collisions can exert a torque on a magnetized plasma column via the FxB force, where F is the force exerted on ions by neutrals. This FxB force may have a significant effect on the dynamics of plasma instabilities and flows. In order to investigate the role of neutral dynamics in helicon discharges in the HelCat (Helicon-Cathode) plasma device at U. New Mexico, an Ar I Laser Induced Fluorescence (LIF) system has been developed. The LIF system is based on a >250 mW, tunable solid state laser. The laser will pumps the metastable \(^2P_{3/2}^0 \)s level to the \(^2P_{1/2}^0 \)p level using 696.7352 nm light, and fluorescence radiation from decay to the \(^2P_{1/2}^0 \)s level at 772.6333 nm is observed. The system design and initial data will be presented.