Long slide-away discharges in the COMPASS tokamak

ONDREJ FICKER, Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 182 00 Prague 8; FNSPE, CTU, Prague, Czech Republic, JAN MLYNAR, MILOS VLAINIC, VLADIMIR WEINZETTL, JAKUB URBAN, JORDAN CAVALIER, JAROSLAV HAVLICEK, RADOMIR PANEK, MARTIN HRON, IPP CAS, Prague, CZ, JAROSLAV CEROVSKY, FNSPE, CTU, Prague, CZ, PETR VONDRACEK, RICHARD PAPROK, IPP CAS, Prague, CZ; FMP, Charles University, Prague, CZ, JOAN DECKER, EPFL, SPC, CH-1015 Lausanne, Switzerland, YVES PEYSSON, CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France, ONDREJ BOGAR, IPP CAS, Prague, CZ, FMPI, Comenius University, Bratislava, Slovakia, ADAM STAHL, Dept. of Physics, Chalmers University of Technology, Gteborg, Sweden, COMPASS TEAM — In this contribution, long runaway electron (RE) dominated discharges achieved in the COMPASS tokamak are presented. The extensive length is possible due to a low consumption of available volt-seconds of the tokamak transformer in this type of discharge. Energetic electron losses in this regime seems to be modulated mainly by small oscillations of a radial position (controller setting) unlike in the RE discharges at higher electron density, where various MHD phenomena affect the evolution of the losses. The behaviour of the slide-away plasma is studied using magnetic coils, HXR detectors, ECE system and a pair of \(^3\)He proportional counters of neutrons. The plasma scenario is also modelled using Fokker-Planck codes.

\(^1\)EUROfusion WP MST1, MST2

Ondrej Ficker
Institute of Plasma Physics of the CAS, Prague, Czech Republic

Date submitted: 15 Jul 2016