Charged Particle Transport in High-Energy-Density Matter

LIAM STANTON, Lawrence Livermore National Laboratory, MICHAEL MURILLO, CMSE, Michigan State University — Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed.

1This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.