Impurity contamination effects on the interaction of Li and Sn Films on W (poly)1 OLUSEYI FASORANTI, Department of Chemistry, Princeton University, BRUCE KOEL, Department of Chemical Biological Engineering, Princeton University — Plasma-solid interactions under fusion divertor conditions lead to continuous material erosion and may result in performance degradation of the plasma-facing components. Liquid metals such as Li and Sn may help to circumvent this issue due to their ability for self-recovery and heat-flux management. This has driven interest in understanding plasma-liquid metal interactions. We have shown in our lab that surface science experiments can examine discrete aspects of plasma-surface interactions by enabling clean and controlled deposition of metal films. We will review our recent results on the thermal stability of ultrathin Li and Sn films on a polycrystalline W surface using surface diagnostic methods such as Temperature Programmed Desorption, Auger Electron Spectroscopy, and Ion Scattering Spectroscopy. These studies examine Li-W and Sn-W interfaces and investigate the impact of impurities. We will discuss relevant issues such as the differences in oxygen uptake between solid and liquid lithium films and the effects of post-oxidation, as well as pre-adsorbed surface oxygen and carbon, on the thermal stability of these films. We plan to present additional studies of deuterium ion uptake and retention on Li and Sn films.

1Support was provided through U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890

Oluseyi Fasoranti
Department of Chemistry, Princeton University

Date submitted: 15 Jul 2016

Electronic form version 1.4