Dynamic Turbulence Evolution during current ramp in ITER-like plasmas on DIII-D1 G.R. McKee, Z. Yan, U. Wisc.-Madison, C. Holland, UCSD, R. Bravenec, Fourth State Research, T. Luce, General Atomics — Low-wavenumber density fluctuations exhibit rapidly changing characteristics during the current ramp-up of ITER-like discharges that reflect a complex interaction between electron transport, safety factor (q), and n_e and T_e profiles. These measurements and analysis may help explain discrepancies between transport models and measurements during ramp-up. Measurements of the 2D fluctuation properties are obtained across the outer half-radius with Beam Emission Spectroscopy. Density fluctuations at $\rho=0.55$ exhibit fluctuations that decrease in amplitude with time. Transient windows of suppressed fluctuations are observed during ramp-up, which correspond to low-order-rational q-surfaces that are associated with localized improved transport. At $\rho=0.82$, a large amplitude burst of low-frequency turbulence occurs early in the current ramp. The amplitude profile of low-k fluctuations exhibits a strong reduction in turbulence with reduced q_{95}; thermal energy confinement likewise increases with decreasing q_{95}.

1Supported by US Department of Energy under DE-FG02-08ER54999.