Abstract Submitted for the DPP16 Meeting of The American Physical Society

Effect of giant charge-transfer resonance $\sigma_{CT} \sim 10^9$ barn on operation of magnetic fusion reactor below "critical energy." TIMOTHY HES-TER, BOGDAN MAGLICH, DAN SCOTT, ALEXANDER VAUCHER, California Science Engineering Corp. — Charge transfer (CT) reactivity was assumed to be negligible compared to ionization (IO) before Belfast measurements $^{1-3}$ revealed the opposite: CT predominance over IO, $\sigma_{CT} \approx 10^9 \text{b}, \sigma_{CT}/\sigma_{IO} \approx \text{U} \approx 100$, below critical 'atomic unit of velocity', $v_o = 2.2 \times 10^8 cm s^{-1}$, which is orbital velocity of e in H atom. Near v_o , U=1, i.e. $\sigma_{CT}\sim\sigma_{IO}$. Critical ion energy is T_0 (lab) = $k\,25\,M$ [KeV] = 200 KeV for [ERR : md : MbegChr = 0x2329, MendChr = 0x232A, nParams = 1] =ion mass [amu] = 4 for DT mix; k = 2. "Burnout" pumping that requires $U \ll 1$ is inoperable in the $U\gg 1$ regime whereas CT continually acts like compressor increasing operating vacuum pressure during neutral beam discharge to 10^{-3} Torr/0.3 s; this, in turn, sets upper limits to ion life-time against neutralization to $\bar{\tau} = 10^{-6}$ s. $\bar{\tau}$ is 10^5 times shorter than thermalization time constant; hence plasma cannot be created. Lawson⁴ was unaware of CT resonance; his "critical temperature" (30 KeV for DT) should be replaced with T_0 . 1. Gilbody, Physica Scripta 23, 143 (1981); 2. Gilbody, AIP 360.19 (1996); 3. Post, Pyle, Atomic Molec. Phys. Contr. Fusion p. 477, Jochain (Ed.) Plenum Press(1983); 4. Lawson, Proc. Phys. Soc. B70, 6 (1957).

> Timothy Hester California Science Engineering Corp.

Date submitted: 20 Jul 2016 Electronic form version 1.4