Plasma Studies in the SPECTOR Experiment as Target Development for MTF

RUSS IVANOV1, WILLIAM YOUNG, General Fusion Inc., THE GENERAL FUSION TEAM — General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a= 9 cm, R= 19 cm) with a pre-existing toroidal field created by ~ 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of ~ 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor $q(\Psi)$. Relatively hot ($T_e \geq 350$ eV) and dense ($\sim 10^{20}$ m$^{-3}$) plasmas have achieved energy confinement times $\tau_E \geq 100\mu$sec and are now ready for field compression tests.

1russ.ivanov@generalfusion.com

Stephen Howard
General Fusion Inc.

Date submitted: 15 Jul 2016 Electronic form version 1.4