Abstract Submitted
for the DPP16 Meeting of
The American Physical Society

Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

X. F. SHEN, B. QIAO, H. X. CHANG, Peking University, S. KAR, Queen’s University of Belfast, C. T. ZHOU, Peking University, M. BORGHESSI, Queen’s University of Belfast, X. T. HE, Peking University — Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al$^{13+}$ beam with peak energy 4.0GeV and particle number 10^{10} (charge $> 20nC$) can be obtained at intensity 10^{22} W/cm2.

1Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China

Bin Qiao
Peking University

Date submitted: 16 Jul 2016

Electronic form version 1.4