Abstract Submitted for the DPP17 Meeting of The American Physical Society

First Experiments with e^{-}/H^{-} Plasmas: Enhanced Mode Damping and Transport¹ A.A. KABANTSEV, K.A. THOMPSON, C.F. DRISCOLL, University of California San Diego — Negative Hydrogen ions are produced and confined in a room-temperature electron plasma, causing enhanced mode damping and particle transport effects. We accumulate an H^- charge fraction $n_{H^-}/n_e \sim 20\%$ in about 200 seconds, as externally excited H_2 molecules undergo dissociative electron attachment in the plasma. The accumulated H^- fraction causes a novel algebraic damping of diocotron mode amplitude A(t), and the damping is coincident with an enhanced outward drift v_r of the H^- ions. That is, $dA/dt = -\alpha$, with $\alpha \propto n_{H^-} * v_r$. We observe that heating the e^-/H^- plasma terminates the enhanced damping and enhanced centrifugal separation, both of which resume when plasma re-cools by cyclotron radiation at B = 1.2T. Other interesting observations include: (1) enhanced e^{-} cooling from collisions with H^{-} cooled by neutrals; (2) enhanced damping of plasma waves due to e^{-}/H^{-} collisional drag; (3) strong exponential damping of diocotron modes in a "floppy" nearly-pure H^- plasma, created by rapid axial ejection of the electrons. Additional novel drift modes and instabilities are predicted theoretically in such a plasma [1]. [1] D.H.E. Dubin, Phys. Plasmas 17, 112115 (2010).

¹Supported by NSF/DoE Partnership grants PHY-1414570 and DE-SC0008693.

Andrey Kabantsev University of California San Diego

Date submitted: 06 Jul 2017

Electronic form version 1.4