Using Wave-Based Cross-Beam Energy Transfer Simulations to Improve the Ray-Based Models Used in Inertial Confinement Fusion Applications

R.K. FOLLETT, D.H. EDGELL, D.H. FROULA, V.N. GONCHAROV, I.V. IGUMENSICHEV, J.G. SHAW, J.F. MYATT, Laboratory for Laser Energetics, U. of Rochester — Ray-based models of cross-beam energy transfer (CBET) are used in radiation–hydrodynamics codes to calculate laser-energy deposition for inertial confinement fusion (ICF) experiments. In direct-drive ICF, calculations suggest that CBET is responsible for a 10% to 20% reduction in laser energy absorption.\(^1\) In indirect drive, ray-based calculations predict full pump depletion of the outer cone beams.\(^2\) Ray-based CBET models require artificial limiters to give quantitative agreement with experimental observables. The recent development of a 3-D wave-based solver (LPSE CBET) that does not rely on the paraxial or eikonal approximations allows the limitations of ray-based CBET models to be studied at conditions relevant to laser-driven ICF. The accuracy of ray-based CBET models is limited by uncertainties in the approximations used to account for the experimental realities of beam speckle, polarization smoothing, and interactions at caustics. A physics-based technique is proposed for including the effect of beam speckle in existing ray-based models that gives excellent agreement with the wave-based calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.