Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM

NICHOLAS RAMEY, Univ of Michigan - Ann Arbor, JOSHUA COLEMAN, JOHN PERRY, Los Alamos National Laboratory — A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K-α and K-β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique.

This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.