Influence of Neutral Pressure on Instability Enhanced Friction and Ion Velocities at the Sheath Edge of Two-Ion-Species Plasmas

PATRICK ADRIAN, Massachusetts Institute of Technology, SCOTT BAALRUD, University of Iowa, TREVOR LAFLUER, Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique — The speed at which ions enter the sheath is a critical parameter to model in low temperature plasmas. For two-ion species plasmas, the Instability-Enhanced Friction (IEF) theory \cite{1} predicts the ions’ sheath-edge flow speeds based upon the presence of ion-ion two-stream instabilities in the presheath which cause an enhanced friction between the ions merging their velocities up-until the sheath-edge. Here we will report two contributions advancing the IEF theory. First, we have directly calculated the ion-ion friction force in the presheath due to the two-stream instability from new Particle-in-Cell Monte-Carlo Collision (PIC-MCC) simulations. This result directly links the merging of the ion velocities with the enhanced wave-particle scattering due to the ion-ion two-stream instability. Our second result was that the two-stream instability persisted up to 10’s of mTorr as we varied the neutral pressure in the simulations. Adding an ion-neutral collision operator into the IEF theory resulted in accurate predictions for the ion sheath-edge speeds over a range of neutral pressures. This result could impact plasma-based manufacturing designs which can operate in the 10’s of mTorr.

\cite{1} S. D. Baalrud, C. C. Hegna, and J. D. Callen, PRL 103, 205002 (2009)

1DOE Grant Award No. DE-SC0016473

Patrick Adrian
Massachusetts Institute of Technology

Date submitted: 11 Jul 2017

Electronic form version 1.4