Abstract Submitted
for the DPP17 Meeting of
The American Physical Society

Observation of Electron Bernstein Wave Heating in the RFP
ANDREW SELTZMAN, JAY ANDERSON, JOHN GOETZ, CARY FOREST, Univ of Wisconsin, Madison — The first observation of RF heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) has been demonstrated on MST. Efficient mode conversion of an outboard-launched X mode wave at 5.5 GHz leads to Doppler-shifted resonant absorption ($\omega_{rf} = n\omega_{ce} - k||v||$) for a broad range ($n=1$-$7$) of harmonics. The dynamics of EBW-heated electrons are measured using a spatial distribution of solid targets with diametrically opposed x-ray detectors. EBW heating produces a clear supra-thermal electron tail in MST. Radial deposition of the EBW is controlled with $|B|$ and is measured using the HXR flux emitted from an insertable probe. In the thick-shelled MST RFP, the radial accessibility of EBW is limited to $r/a > 0.8$ (~10cm) by magnetic field error induced by the porthole necessary for the antenna. Experimental measurements show EBW propagation inward through a stochastic magnetic field. EBW-heated test electrons are used as a direct probe of edge ($r/a > 0.9$) radial transport, showing a modest transition from ‘standard’ to reduced-tearing RFP operation. Electron loss is too fast for collisional effects and implies a large non-collisional radial diffusivity. EBW heating has been demonstrated in reduced magnetic stochasticity plasmas with $\beta = 15$-20%. Work supported by USDOE.

Andrew Seltzman
Univ of Wisconsin, Madison

Date submitted: 13 Jul 2017

Electronic form version 1.4