Reverse Current Shock Induced by Plasma-Neutral Collision

PAKORN WONGWAITAYAKORNKUL, MAGNUS HAW, Caltech, HUI LI, SHENGTAI LI, Los Alamos National Laboratory, PAUL BELLAN, Caltech — The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.

Pakorn Wongwaitayakornkul
Caltech

Date submitted: 12 Jul 2017
Electronic form version 1.4