Hugoniot Measurements of Matter Compressed to 100 Mbar at the National Ignition Facility1 MICHELLE GREGOR, A. LAZICKI, D. ERSKINE, R. LONDON, F. COPPARI, D. SWIFT, J. EGGERT, D. FRATANDUONO, P. CELLIERS, H. WHITLEY, J. NILSEN, Lawrence Livermore National Laboratory — The equations of state (EOS) of materials at pressures near 100 Mbar can now be explored using large-scale laser facilities. This pressure regime is important to understanding material behavior when the thermal excitation of bound electrons begins to occur. We report on experiments at the National Ignition Facility that shock compressed quartz, Mo, B$_4$C and BeO to 10-100 Mbar. Principal Hugoniot measurements of the samples were obtained using the impedance matching technique relative to a diamond standard. These new measurements can be used to constrain EOS models at previously inaccessible pressures.

1Prepared by LLNL under Contract DE-AC52-07NA27344.

Michelle Gregor
Lawrence Livermore National Laboratory

Date submitted: 13 Jul 2017

Electronic form version 1.4