Simulations and Theory of nonlinear interchange/tearing instabilities in the SOL edge of toroidal plasmas1 WENDELL HORTON, LINJIN ZHENG, HIDEAKI MIURA, University of Texas at Austin — Numerical simulations of a reduced theoretical model for the interchange/tearing instabilities are presented for the turbulence generated by the steep gradients in scrape-off-layer (SOL) edge plasmas. Plasma near the Last Closed Flux Surface (LCFS) and into the scrape-off layer (SOL), are characterized by open magnetic field lines that terminate on the divertor plates. Theoretical and numerical modeling is presented - which includes the current diffusivity which gives the turbulent transport from the pedestal into SOL. The simulations give a low-level saturated current profile in the SOL region with a current density jump across the LCFS. The nonlinear numerical simulations show that the interchange modes evolve into complex structures with a tearing mode/reconnection component that releases both pressure and current gradient energy components. These complex energy releases are consistent with earlier simulations on the current-interchange tearing modes in Zheng and Furukawa [Phys. Plasmas 2010, 2013]. The applicability of the model to the tokamak edge stability and ELM studies is discussed.

1The work is supported by U. S. Department of Energy and the National Institute for Fusion Science, Japan.